5^(2x)=1/25

Simple and best practice solution for 5^(2x)=1/25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5^(2x)=1/25 equation:



5^(2x)=1/25
We move all terms to the left:
5^(2x)-(1/25)=0
We add all the numbers together, and all the variables
5^2x-(+1/25)=0
We get rid of parentheses
5^2x-1/25=0
We multiply all the terms by the denominator
5^2x*25-1=0
Wy multiply elements
125x^2-1=0
a = 125; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·125·(-1)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*125}=\frac{0-10\sqrt{5}}{250} =-\frac{10\sqrt{5}}{250} =-\frac{\sqrt{5}}{25} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*125}=\frac{0+10\sqrt{5}}{250} =\frac{10\sqrt{5}}{250} =\frac{\sqrt{5}}{25} $

See similar equations:

| 30=26-2x | | 2(6n+1)=5n+23 | | 6=2w/5-9 | | 0.3m+1.1=0.4 | | 6x-15=4x-9 | | x^2+7x+4=3x+1 | | 7x-22=4x-22 | | 4(2x-5)2^=16/25 | | 6x+21=3(3x+3) | | x/4+2=2 | | 2(n-3)12=9 | | 42+4x=x | | 5x+2x-3=8x | | 2x-6=4x-4 | | 90=5x-8 | | 3x+4=12+x;x | | 2x-0.7=0.3 | | 8x+9=X=3 | | 3=c/5-7 | | 0.9x−2.1+0.9=0.2(5−x) | | s−2.8=4.5 | | 6x-3x+10= | | 42+4x=11x | | 35-17=x-8 | | 2x+19=4x-7 | | v-(5/6)=-(2/3) | | 2^x-1=30 | | 4-3(x+2)=1 | | 4(2x-5)=6x+10 | | 3x@-108=0 | | -19x-18=-189 | | -2-9w=17+14-20w |

Equations solver categories